COURSE SYLLABUS

Introduction to Blueprint Reading for Welders

WLDG 1313
Number

3 - 0 - 3
Lecture - Lab - Credit

NONE
Prerequisite

This syllabus has been reviewed and is current on the date indicated.

Prepared By Date
____________________ ________
 Jay Burks 09/10/14

Reviewed By Date
____________________ ________
 Michael Reddin 11/3/16
Department Chair
I. Instructor Information

Name: Jay Burks Phone: (325)641-3907
Campus Office: Brownwood Building 4BWD5 email: jay.burks@tstc.edu
Office Hours: 8:00a.m.-5:00p.m. Advisement Hours: 8:00a.m.-5:00p.m.
Monday thru Friday Monday thru Friday

Department Chair: Michael Reddin Department Chair email: michael.reddin@tstc.edu

II. Class Times, Location

Lecture: M/W/F 8:00a.m.-8:55a.m.
Classroom: Building 4BWD1 - 122

15 Weeks Start Date: 01/11/2016 End Date: 04/29/2016

III. Program Outcomes

A. Welding technology graduates will demonstrate competency in using hand and power tools that shows safe working practices.
B. Successful welding technology graduates will demonstrate competency in setting up and using welding equipment to perform welds in all positions using various welding processes.
C. Welding technology graduates will demonstrate proficiency in the setup and use of oxy-fuel and plasma cutting processes.
D. The welding technology graduate will demonstrate competency in using welding blueprints to fabricate a project.

IV. Course Description & Introduction

A study of industrial blueprints. Emphasis placed on terminology, symbols, graphic description, and welding processes. Includes systems of measurement and industry standards. Also includes interpretation of plans and drawings used by industry to facilitate field application and production.

V. Learning Outcomes

The student will:
A. Define terms and abbreviations
B. Identify and explain object views, lines, and dimensions
C. Identify, explain, and interpret weld symbols
D. Identify structural shapes
E. Demonstrate the proper use of measuring devices
F. Read and interpret blueprints
G. Read welding detail drawings
H. Calculate dimensions and material

VI. Assessment Methods & Grading Policy
Attendance & Participation: 40%
Assignments & Tests: 60%

A = 90 – 100, B = 80 – 89, C = 70 – 79, F = < 70

VII. Textbook/Reference Materials

VIII. Additional Resources & Supplies
Two (2) #2 pencils, pen, ruler, protractor, scientific calculator with fraction function, paper, and graph paper.

IX. Class Participation Policy & Student Conduct
A. Attendance & Participation:
1. Students start each class with 100 points.
2. All students are required to be in class by the scheduled start of each class period. For the first fifteen minutes that an individual is late, this total will be reduced by twenty (20) points. An additional ten (10) points will be deducted for every fifteen minute increment.
3. Three lates will count as one absence.
4. The instructor’s clock is the official clock for determining whether a student is late.
5. Situations may arise during the term, (illness, family emergency, etc.) that force a student to miss a class. If such situations arise, it is the student’s responsibility to notify the instructor prior to the start of class. Failure to notify the instructor will result in a zero (0) for the day. If the student makes notification to the instructor a grade of fifty will be given.
6. If a student misses six (6) class periods, the instructor will assign an “F” for the class and the student will be dropped from the class.
7. If a student is on time to class but does not participate (stay busy) points will be deducted (up to fifty points) at the instructor’s discretion.
8. This policy does not affect the right of the student to drop a course before the mandated deadline or the right of the instructor to assign, with the approval of the department chair, an IP under the appropriate extenuating circumstances.
9. Responsibility for dropping a course lies solely with the student.

B. Assignments:
1. All assignments/homework are due at the beginning of the class assignments turned
in after this time will have ten (10) points deducted. There will be an additional ten (10) points deducted for each additional class period the assignment is late.

2. If a student is absent it is up to the student to obtain missed assignments. If a student knows ahead of time they will be missing a class, coordinate with the instructor ahead of time so as to turn any assignments due during the absence.

C. Test/Quizzes:
 1. Twenty (20) points will be deducted for a missed exam. If you know you will be missing class, coordinate with the instructor ahead of time so as to take any exams prior to the absence.

D. Conduct:
 1. Students are expected to behave in a manner that is respectful to others in the class, disruptive behavior will not be tolerated. You will be asked to leave and will not be allowed to make up any missed work. Continual disruption will result in permanent removal from class. Use of cell phones will not be permitted in the classroom or shop. Cell phone usage in the classroom or shop will result in a zero (0) for the day.

X. Safety
 1. Campus building occupants are required to evacuate buildings when a fire alarm activates. Alarm activation or announcement requires exiting and assembling outside.
 2. Familiarize yourself with all exit doors of each classroom and building you may occupy while you are receiving instructions. The nearest door may not be the door you used when entering the building.
 3. Students requiring evacuation assistance should inform the instructor during the first week of class.
 4. In the event of evacuation, follow the faculty’s or class instructor’s instructions.
 5. DO NOT re-enter a building unless given instructions by the Fire Department, Campus/Local Police, or Fire Prevention Services.
 6. Students will comply with all safety rules as follows:
 - Upon entrance into the lab, students will have safety glasses on and will wear them the entire time that they are in the lab.
 - Students will use safe practices when using all equipment in the lab, including hand and power tools and all welding and cutting equipment.
 - While using or being near those using cutting, welding, and grinding equipment, students will be aware of where they are directing sparks.
 - Because of the inherent danger of using above stated equipment, any student found not to be following safety rules can face disciplinary actions up to and including removal from class.
XI. Special Needs
If you have a documented disability that will impact your work in this class, please contact the ADA Coordinator, so that appropriate arrangements for your accommodations can be made. The counselor on your campus can assist you in this process. In accordance with the federal law, a student requesting accommodations must provide documentation of his/her disability to the ADA Coordinator. For more information call (325) 236-8292 or email amy.freeman@tstc.edu.

XII. Course Schedule

Lectures: Weeks 1 -15
A. Unit 4: Alphabet of Lines
B. Unit 5: Understanding Prints
C. Unit 12: Structural Metals
D. Unit 14: Welding Symbols
E. Unit 15: Fillet Welds
F. Unit 16: Groove Welds
G. Unit 25: Print Reading Activities

Tests:
Mid Term: Week 8
Final: Week 15
Education

<table>
<thead>
<tr>
<th>Name of Institution</th>
<th>Degree Earned</th>
<th>Date Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernon Regional Junior College</td>
<td>Associate of Applied Science Welding Technology</td>
<td>August 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Certifications

<table>
<thead>
<tr>
<th>Name of Certification</th>
<th>Date Expires</th>
<th>Date Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS D1.1 Code Certification</td>
<td>Current</td>
<td>December 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Industry, Teaching or Training, and Other (Examples: publications and memberships)

Experience Relevant To Course

<table>
<thead>
<tr>
<th>Description of Experience Related To Course</th>
<th>Date Ended</th>
<th>Date Began</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-employed (contract welder part-time), Fabrication and repair to suit customer</td>
<td>September 2010</td>
<td>January 2009</td>
</tr>
<tr>
<td>Self-employed (contract welder), Fabrication and repair of oilfield equipment</td>
<td>August 2012</td>
<td>September 2010</td>
</tr>
<tr>
<td>Steinberger Drilling Company, Fabrication and refurbishing of oilfield drilling equipment</td>
<td>August 2012</td>
<td>September 2010</td>
</tr>
<tr>
<td>Vernon College, Lab Assistant (Welding Technology)</td>
<td>August 2010</td>
<td>August 2009</td>
</tr>
<tr>
<td>Vernon College, Welding Instructor</td>
<td>August 2012</td>
<td>August 2010</td>
</tr>
<tr>
<td>Texas State Technical College, Welding Instructor</td>
<td>Present</td>
<td>August 2012</td>
</tr>
</tbody>
</table>
Student Acknowledgement:

This is to acknowledge that I have received a copy of the syllabus for the course WLDG 1313 Introduction to Blueprint Reading for Welders. I understand that it is my responsibility to read and understand the syllabus and to abide by the guidelines presented therein.

__________________________________ ______________________________
Student Printed Name Signature

Date